TA: LEE, Yat Long Luca **Email:** <yllee@math.cuhk.edu.hk> **Office:** Room 505, AB1 **Office Hour:** Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall:

Theorem 3.10 (Picard-Lindelöf Theorem) Consider the IVP given by

! $\frac{1}{2}$ \mathbf{I} $\frac{dx}{dt} = f(t, x)$ $x(t_0) = x_0$

where $f \in C(R)$ satisfies the Lipschitz condition on

$$
R := [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b] = \overline{B_a(t_0)} \times \overline{B_b(x_0)}.
$$

Then there exists $a' \in (0, a)$ and $x \in C^1(\overline{B_{a'}(t_0)})$, $x(t) \in \overline{B_b(x_0)}$ for all $t \in \overline{B_{a'}(t_0)}$ such that it solves the IVP above and the solution is unique in $\overline{B_{a'}(t_0)}$.

Recall from your ODE course that ODE of any order can be written as a system of first order ODEs, and that the Picard-Lindelöf theorem is still valid for system of first order IVPs.

Let (*X*, *d*) be a metric space

- $C_b(X) \subset C(X)$
- If *G* is bounded and open in \mathbb{R}^n , then $C_b(\overline{G}) = C(\overline{G})$
- $(C_b(X), d_\infty)$ is a complete metric space, for any metric space (X, d)
- *•* A subset *E* ⊂ *X* is **precompact** if every sequence in *E* contains a convergent subsequence (its limit may or may not be in *E*). If the limit is in *E*, then *E* is **compact**.
- A subset *C* of $C(X)$ is **equicontinuous** if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$
|f(x) - f(y)| < \varepsilon, \quad \forall f \in \mathcal{C} \text{ and } d(x, y) < \delta
$$

for $x, y \in X$. Any subset of C is equicontinuous.

• $f: \overline{G} \to \mathbb{R}$ is **Hölder continuous** with exponent $\alpha \in (0,1)$ if

 $|f(x) - f(y)|$ ≤ *L*|*x* − *y*|^α, $\forall x, y \in \overline{G}$ and some constant *L*

Proposition 4.1 Let *C* be a subset of $C(\overline{G})$, where \overline{G} is convex in \mathbb{R}^n . Suppose that each function in $\mathcal C$ is differentiable and there is a uniform bound on their partial derivatives. Then *C* is equicontinuous.

More on Compact sets

Definition 1.1 Let (X, d) be a metric space, a set *A* ⊂ *X* is said to be *totally bounded* if for every ε *>* 0, *A* can be covered by finitely many open balls of radius ε. Such an open cover by finitely many open balls with radius ε *>* 0 is called a finite ε*-net*.

Definition 1.2 Let (X, d) be a metric space. A subset $K ⊂ X$ is said to be *compact* if for any open coverings $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ of *K*, there exists a finite subcovering $\{U_{\alpha_i}\}_{i=1}^n$ of *K*. That is, if for any $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ such that $K \subseteq \bigcup_{\alpha \in \mathcal{A}} U_\alpha$, then there exists $\{U_{\alpha_i}\}_{i=1}^n \subset \{U_\alpha\}_{\alpha \in \mathcal{A}}$ such that $K \subseteq \bigcup_{i=1}^n U_{\alpha_i}.$

Remark: The "Compactness" defined in MATH3060 is in fact called "sequential compactness". We will show that these two definitions are equivalent over any metric spaces.

Theorem 1.3 Let (X, d) be a metric space and $K \subset X$. Then the following are equivalent:

- (i) *K* is compact
- (ii) Every sequence in *K* has a convergent subsequence which converges in *K*
- (iii) *K* is complete and totally bounded

Proof:

 $(i) \implies (ii)$

We prove it by a contrapositive argument. Suppose that *K* is not sequentially compact, then there exists a sequence *{xn}* such that it does not contain a subsequence which converges in *K*.

For all $x \in K$, if every ball centered at *x* contains infinitely many elements, then we are done, in the sense that we can construct a converging sequence. We do it by constructing the sequence as follows: Consider the ball $B(x, \frac{1}{k})$ for $k \ge 1$. For $k = 1$, since $B(x, 1)$ contains infinitely many elements, we can pick $x_{n_1} \in B(x, 1)$. Then for $k = 2$, we pick $x_{n_2} \in B(x, \frac{1}{2})$ with $n_2 > n_3$, such a x_{n_2} exists because $B(x, \frac{1}{2})$ contains infinitely many elements. We keep doing it for all *k* and obtain $\{x_{n_k}\}_k$ with $n_{k+1} > n_k$ for all $k \geq 1$. Then this sequence tends to *x* as $k \to \infty$. Which contradicts the fact that *K* is not sequentially compact.

Hence, we deduced that the open balls contain only finitely many elements. Now, for all *x* ∈ *K*, pick a ball, *B_x* which centers at *x*. Then ${B_x}_{x \in K}$ forms an open cover of *K*. But then a finite subcover of this collection will only cover finitely many points in *K*, which implies *K* does not admit a finite subcovering, further implies that *K* is not compact.

 $(ii) \Longrightarrow (iii)$

Suppose that *K* is sequentially compact, we would like to show that *K* is both complete and totally bounded.

We first show that *K* is complete. Pick a Cauchy sequence $\{x_n\}$ in *K*, since *K* is sequentially compact, there exists a subsequence of $\{x_n\}$ such that it converges to a point in *K*. But this is not enough, we need to show that $\{x_n\}$ converges in *K* too.

Lemma 1.4 If $\{x_n\}$ is a Cauchy sequence and suppose that there exists a subsequence ${x_n}$ of ${x_n}$ such that ${x_n} \to x$ as $j \to \infty$. Then ${x_n} \to x$ as $n \to \infty$. *This concludes the part where K is complete, because Cauchy sequence converges to the limit of its subsequence.*

Proof of Lemma 1.4: We want to show that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that whenever $n > N$, we have $d(x_n, x) < ε$.

Since we are given that *K* contains a convergence subsequence, then there exists $J \in \mathbb{N}$ such that for all $j > J$, we have $d(x_{n_j}, x) < \varepsilon/2$. Moreover, since $\{x_n\}$ is Cauchy, there exists *N* \in *N* such that for *m*, *n* $>$ *M*, we have $d(x_m, x_n)$ $<$ $\varepsilon/2$.

Since n_j is increasing, there must exists $j > J$ such that $n_j > N$. Then for any $n > N$, we have

d(*x_n*, *x*) < *d*(*x_n*, *x_{n_j*}) + *d*(*x_{n_j*}, *x*) < ε/2 + ε/2 = ε

Thus, we conclude Lemma 1.4 and completeness of *K*.

Now we proceed to show that *K* is totally bounded. That is, we want to show that for every $\varepsilon > 0$, *K* can be covered by finitely many open balls with radius ε . We show this by constructing a finite $ε$ -net manually.

Pick $x_1 \in K$, if $B(x_1, \varepsilon)$ covers K, then we are done. If not, since $B(x_1, \varepsilon)$ does not cover K, we can pick $x_2 \in K \setminus B(x_1,\varepsilon)$, if $B(x_1,\varepsilon) \cup B(x_2,\varepsilon)$ covers *K*, then we are done. We can repeat this process for any x_n . S

Now, suppose the above process ends after finitely many steps, then we are done. If not, i.e., we can pick a point indefinitely, then we get an infinite sequence $\{x_n\}_{n\in\mathbb{N}}$ such that each x_n does not lie in $B(x_1 \varepsilon) \cup \cdots \cup B(x_{n-1}, \varepsilon)$. In particular, $d(x_n, x_m) \geq \varepsilon$ for all $n \neq m$. This implies the sequence does not have a Cauchy subsequence. Since all convergent sequence is Cauchy, this implies $\{x_n\}$ has no convergent subsequence, which contradicted the fact that *K* is sequentially compact. Thus this process ends with finitely many steps, hence obtaining a finite ε-net.

 $(iii) \implies (i)$

(Leave it for the next tutorial. Will continue once you have learnt the diagonalization argument from the proof of Arzelà-Ascoli's theorem.)

"

□

Exercise 1

Let (X, d_X) and (Y, d_Y) be two metric spaces and $f : X \to Y$ be a continuous map. Show that if *K* \subseteq *X* is compact in *X*, then *f*(*K*) is compact in *Y*.

Solution:

Since we want to show that *f*(*K*) is compact, we may pick any open covering ${U_{\alpha}}_{\alpha \in I}$ of *f*(*K*) such that

$$
f(K)\subseteq \bigcup_{\alpha\in I}U_{\alpha}
$$

then show that there is a finite subcovering.

Since *K* is compact, and that ${U_\alpha}_{\alpha \in I}$ is an open covering of $f(K)$, then ${f^{-1}(U_\alpha)}_{\alpha \in I}$ is an open covering of *K*, since

$$
f(K) \subseteq \bigcup_{\alpha \in I} U_{\alpha} \implies K \subseteq f^{-1}\left(\bigcup_{\alpha \in I} U_{\alpha}\right) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha})
$$

then using the fact that *K* is compact, there exists a finite subcollection of $\{f^{-1}(U_\alpha)\}_{\alpha \in I}$ such that

$$
K\subseteq \bigcup_{i=1}^n f^{-1}(U_{\alpha_i})
$$

similarly,

$$
f(K) \subseteq \bigcup_{i=1}^n U_{\alpha_i}
$$

thus, ${U_{\alpha_i}}_{i=1}^n$ is a finite subcovering of *K*.

"

Exercise 2: Grönwall's Inequality (Basic Case)

This a useful inequality in the theory of ODE.

Let $L > 0$ be a positive constant, and C be any real constant. Suppose $y(t)$ is a continuous func*tion defined on a time interval I containing t*⁰ *and satisfies*

$$
y(t) \le C + \int_{t_0}^t L y(s) ds \tag{0.1}
$$

for all $t \in I$ *. Then we have* $y(t) \le Ce^{L|t-t_0|}$ *for all* $t \in I$ *.*

Prove it.

Solution:

In this proof, we will show the case for $t > t_0$. The proof for $t < t_0$ is done similarly, thus it is left for you to verify.

The proof of the Grönwall's inequality uses a common technique called *barrier method*. The idea of the barrier method is to see whether the solution, $x(t) = Ce^{L|t-t_0|}$, of the integral equation

$$
x(t) = C + \int_{t_0}^{t} Lx(s) \, ds \tag{0.2}
$$

lies above the *y*(*t*) satisfying ([0.1](#page-4-0)). Graphically, the desired result would be *y*(*t*) $\leq x(t)$ for all $t \geq t_0$ where $t \in I$.

We will apply a commonly used trick in theory of ODE/PDE, called "ε*-trick*", to show our desired result.

Given any $\varepsilon > 0$, for any $t \in I$, equation ([0.1](#page-4-0)) can be written as

$$
y(t) < (C + \varepsilon) + \int_{t_0}^t L y(s) \, ds \tag{0.3}
$$

Let $x_{\varepsilon}(t) := (C + \varepsilon)e^{L|t-t_0|}$, which satisfies

$$
x_{\varepsilon}(t) = (C + \varepsilon) + \int_{t_0}^t Lx_{\varepsilon}(s) ds \qquad (0.4)
$$

for any $t \in I$.

At the point $t = t_0$, from ([0.3](#page-4-1)) and ([0.4](#page-4-2)), we see that $y(t_0) < C + \varepsilon$ and $x_\varepsilon(t_0) = C + \varepsilon$, meaning that $y(t_0) < x_\varepsilon(t_0)$.

Since we want to show that $y(t) < x_{\varepsilon}(t)$ for all $t \ge t_0$ and $t \in I$, we assume that there exists a $t_1 > t_0$ such that $y(t_1) = x_\varepsilon(t_1)$, such a t_1 is chosen such that this is the **first** time *y* and x_ε intersects. In other words, $y(t) < x_{\varepsilon}(t)$ for all $t \in [t_0, t_1)$. Then

$$
\int_{t_0}^{t_1} (x_\varepsilon(s) - y(s)) ds > 0
$$
\n(0.5)

However, if we substitute t_1 into [\(0.3\)](#page-4-1) and ([0.4\)](#page-4-2), then

$$
0 = y(t_1) - x_{\varepsilon}(t_1) < \int_{t_0}^{t_1} L(y(s) - x_{\varepsilon}(s)) \, ds
$$

but ([0.5](#page-4-3)) tells us that the integral should be strictly larger than 0. This, a contradiction.

Hence, $y(t) < x_{\varepsilon}(t)$ for all $t \ge t_0$. Since ε is chosen arbitrarily, we may take $\varepsilon \to 0^+$ and thus

$$
y(t) \le \lim_{\varepsilon \to 0^+} (C + \varepsilon) e^{L(t - t_0)} = Ce^{L(t - t_0)}
$$

for any $t \ge t_0$ and $t \in I$.

 \blacksquare

Exercise 3: Grönwall's Inequality (Variation)

This version of the Grönwall's inequality replaced the positive constant *L* in the basic case by a nonnegative continuous function $v : (-\infty, \infty) \to \mathbb{R}$.

Let C be any real constant and v : $(-\infty, \infty)$ → R *be a nonnegative continuous function. Suppose* $u : [0, \alpha] \rightarrow \mathbb{R}$ *is a continuous function such that*

$$
u(t) \le C + \int_0^t v(s)u(s) \, ds \tag{0.6}
$$

for all $t \in [0, \alpha]$ *. Then*

$$
u(t) \le C \exp\left(\int_0^t v(s) \, ds\right) \tag{0.7}
$$

for all $t \in [0, \alpha]$.

Prove it.

Solution:

For any $\varepsilon > 0$, from [\(0.6](#page-6-0)), we know that

$$
u(t) < (C + \varepsilon) + \int_0^t v(s)u(s) \, ds \tag{0.8}
$$

Now consider

$$
x_{\varepsilon}(t) = (C + \varepsilon) \exp\left(\int_0^t v(s) \, ds\right)
$$

we verify that it is a solution to the integral equation

$$
f(t) = (C + \varepsilon) + \int_0^t v(s)f(s) dt \iff f'(t) = v(t)f(t)
$$

(*f* is used for generality). Differentiate $x_{\varepsilon}(t)$, we have

$$
x'_{\varepsilon}(t) = (C + \varepsilon) \frac{d}{dt} \exp\left(\int_0^t v(s) ds\right)
$$

= (C + \varepsilon) \exp\left(\int_0^t v(s) ds\right) \frac{d}{dt} \left(\int_0^t v(s) ds\right)
= (C + \varepsilon) \exp\left(\int_0^t v(s) ds\right) v(t)
= v(t) x_{\varepsilon}(t)

thus it is a solution. For later purposes, we write

$$
x_{\varepsilon}(t) = (C + \varepsilon) + \int_0^t v(s) x_{\varepsilon}(s) ds \tag{0.9}
$$

Now we take a time $t_1 \in [0, \alpha]$ such that $t_1 > t_0$ and $u(t_1) = x_{\varepsilon}(t_1)$, which is the first time such that *u* intersects x_{ε} . Then

$$
\int_0^{t_1} (u(s) - x_\varepsilon(s)) ds > 0
$$

7

since *v* is nonnegative continuous,

$$
\int_0^{t_1} v(s) (u(s) - x_\varepsilon(s)) ds \ge 0
$$
\n(0.10)

However, by [\(0.8\)](#page-6-1) and ([0.9\)](#page-6-2) and substituting $t = t_1$, we have

$$
0 = u(t_1) - x_{\varepsilon}(t_1) < \int_0^t v(s) (u(s) - x_{\varepsilon}(s)) \, ds
$$

which contradiction [\(0.10](#page-7-0)). Thus, $u(t) < x_{\varepsilon}(t)$ for all $t \in [0, \alpha]$. Taking $\varepsilon \to 0^+$, we have

$$
u(t) \leq \lim_{\varepsilon \to 0^+} (C + \varepsilon) \exp \left(\int_0^t v(s) \, ds \right) = C \exp \left(\int_0^t v(s) \, ds \right)
$$

"

Reference

- 1. Analysis II by T. Tao
- 2. MATH3060 Lecture notes by Prof KS Chou.
- 3. Ordinary Differential Equation by Prof Frederick TH Fong
- 4. Principle of Mathematical Analysis by W. Rudin